CIS-3-METHYLFLAVANONES¹

D. M. X. DONNELLY,* A. K. KEENAN, T. LEAHY, E. M. **PHILBIN Department of** Chemistry, University College, Dublin 4, Ireland

and

G. JANZSÓ,[†] F. KÁLLAY and I. KOCZAR Research Institute for Organic Chemical Industry, Budapest, Hungary

(Received in the UK 23 December 1971; Accepted for publication 27 January 1972)

Abstract- A simple high yield preparation of cis-3-methylflavanones is described and the stereochemistry of the intermediate 4-oximinoflavans is discussed.

THE PREPARATION of cis-3-substituted flavanones $(I, R = OMe, Me)$ is hindered by the relative ease of their epimerization in acid medium to give a mixture of trans- (II) and cis -(I) isomers.² cis-3-Hydroxyflavanones³ are unknown but some *cis*-3methoxy- 4.2 and cis-3-bromo-⁵ flavanones have been synthesized.

We report here details of a useful method for the preparation of some 2,3-cis-3methylflavanones (IIIa, b, d).

Cyclization of 2'-hydroxy- α -methylchalcones with base gave the corresponding 2..3-trans-3-methylflavanones (IVa-d) $(J_{2,3}$ 12 Hz). Oximation of the latter compounds afforded 2,3-cis-3-methyl-4-oximinoflavans (Va-d) $(J_{2,3}$ 2.6 Hz), which on subsequent treatment with sodium bisulphite followed by dilute HCl at $0⁰⁶$ gave the 2,?-cis-3-methylflavanones (IIIa-b, d).

The change in spatial relationship of the C-2 and C-3 protons on oximation of the rrms-flavanones (1Va-d) arises during the reaction as a result of epimerization at C-3. Experimental evidence in support of epimerization occurring during the oximation reaction is shown by the conversion of 2,3-trans-3',4'-methylenedioxy-3-methylflavanone (IVb) into the 3-deutero oxime, on treatment with hydroxylamine in pyridine/D,O. The deuterium is retained during the hydrolysis (Method 1) to give 3-deutero-3',4'-methylenedioxy-3-methylflavanone.

When hydrolysis of the oximes was carried out under more vigorous conditions (Method 2) a mixture of *2,3-cis-* and 2,3-trans-fiavanones resulted.

^{*} To whom enquiries should be addressed.

^{+&#}x27; IJnited Nations Fellow 1969-1970 at University College, Dublin

In the light of the results obtained in the 3-methylflavanone series, a re-examination of dihydroflavonol oxime formation was undertaken.

Previously,⁷ it was concluded that ring inversion accounted for unexpected decrease of the coupling constants of 3-acetoxyflavanone oxime acetates (VI), on acetylation of the syn- and anti-isomers of 2,3-trans-3-hydroxy-4-oximinoflavan. It was considered that ring inversion would minimize interaction between C_3 —OAc and C_2 — ϕ groups and that the $>$ C=N linkage was less effective than the $>$ C=O linkage in fixing the diequatorial conformation of the C-2 and C-3 substituents.

The dihydroflavanol oximes $\{J_{2,3}\}$ 9.4 Hz (syn); 7.9 Hz (anti)}, when prepared using hydroxylamine, pyridine/D,O showed no deuterium uptake. Epimerization apparently does not occur. Acetylation of the oximes afforded a mixture of 3-acetoxyflavanone oxime acetates (VI) $\{J_{2,3}\ 3.6\ Hz(syn); 3.2\ Hz(atith) \}$ which under controlled hydrolysis (Method 1) gave 2,3-trans-dihydroflavanol (II, $R = OH$) as the sole product. These experimental results lend support to the previous conclusion' that ring inversion occurred during the acetylation reaction.

The assignment of syn- and anti-configurations to 3-hydroxyflavanone oximes was based on their NMR analyses (Table 2). The NMR technique has been used in the study of isomeric oximes $⁸$ as the anisotropy of the hydroxyimino group results in</sup> chemical shift differences. Studies on benzene induced shifts,⁹ and more recently tris(DPM)europium¹⁰ induced shifts on oximes have been recorded.

The 2,3-trans-3-methylflavanone (IVa, b) yielded only one oxime (Va, b) in each case to which an anti-configuration was assigned on the basis of the downfield shift of the 5-proton (Table 1). An anti-configuration was tentatively assigned to the oxime (Vc).

Compound	$J_{2,3}$ Hz	C_v -Me $(J_{3H,Me})$	$H-2$	$H-3*$	$H-5$
2.3-cis-3-Methyl-4-oximinoflavan (Va)	2.9	9.09 (70 Hz)	4.77	6.25	2.1
2,3-cis-3',4'-Methylencdioxy-3-methyl-4-					
oximinoflavan (Vb)	2.8	$9-1$ (7.1 Hz)	4.76	6.27	2.15
$2.3\text{-}cis-4', 5.7\text{-}Trimetboxy-3-methyl-4-$					
oximinoflavan (Vc)	2.6	907 (7.4 Hz)	483	6.19	
$2.3\text{-}cis-4$ -Methoxy-3,5,7-trimethyl-4-					
oximinoflavan (Vd)	2.6	9.15 (7.8 Hz)	4.56	5.9	
$2,3$ -trans-4'-Methoxy-3,5,7-trimethyl-4-					
oximinoflavan (VIId)	3.2	8.7 (7.8 Hz)	4.98	5.85	

TABLE 1. NMR SPECTRA OF SOME anti-OXIMES

^{*} Multiplet centred at the r value given.

Table 1 NMR data, spectra run in CDCI, at 60 MHz with TMS as internal standard, all values on z scale, *J* **in Hz.**

The introduction of a C-5 methyl substituent in the trans-flavanone (IVd) resulted in the formation of two oximes. The major product anti-2,3-cis-4'-methoxy-3,5,7 trimethyl-4-oximinoflavan (Vd), on bisulphite hydrolysis (Method 1) yielded the corresponding 2,3-cis-3-methylflavanone (IIId), the minor product (VII) $(J_{2,3})$ 3.2 Hz) on bisulphite hydrolysis gave only 2,3-trans-flavanone (IVd). The major product (Vd) involved epimerization at C-3 whilst the formation of the minor product (VII) was accompanied by ring inversion.

The coupling constant $J_{2,3}$ 3.2 Hz for compound (VII) closely resembles that of the 3-acetoxyflavanone oxime acetates (VI) $(J_{2,3}$ 3.2-3.6 Hz).

Oximation of two 3,3-disubstituted flavanones gave syn- and anti-isomers. The minor products assigned the anti configurations were heat labile and readily converted to the more stable syn-isomers. Relevant NMR data is given in Table 2.

 \dagger The NMR spectra were run in $(CD₃)₂CO$ at 60 MHz with TMS as internal standard, all values on r scale, *J* in Hz.

The production of 2,3-cis-3-methylflavanones (III), on hydrolysis (Method 1) of the corresponding 2,3-cis-oximes (V), provides a useful route to their preparation, and to the elucidation of the stereochemistry of the oximes. An analogous situation has been observed for the 3-phenylflavanones. For example, 2,3-trans-3-phenylflavanone when treated with hydrazine hydrochloride yielded 2,3-cis-3-phenylflavan hydrazone.

EXPERIMENTAL

Unless otherwise stated, IR spectra were measured as KBr discs and 60 MHz. NMR spectra in CDCl₃ (TMS as internal reference). Only significant bands from IR spectra are quoted.

Merck Kieselgel HF₂₅₄₊₃₆₆ was used for thick and thin layer chromatography.

General *preparation of chalcones*. Equimolar quantities of the respective acetophenone and the aldehyde in EtOH were treated dropwise, under stirring, with NaOH aq. (50%) . After 24 hr at 20° (or reflux for 1 hr), the product was poured into excess of $ice-HCl$ (3:1) to precipitate the chalcone. The chalcones were purified in the usual manner. Details for individual chalcones, their m.p. (solvent), $\frac{9}{6}$ yield and analyses are given below :

 $2'$ -Hydroxy-x-methylchalconc¹¹ b.p. 140°/1.8 mm, 50%.

2'-Hydroxy-3',4'-methylenedioxy-x-methylchalconc,¹² m.p. 110-111° (EtOH), 89%.

2'-Hydroxy-4,4',6'-trimethoxy- α -methylchalconc m.p. 99-100° (EtOH): 50% (Found: C, 69.7: H, 6.1. $C_{19}H_{20}O_5$ requires C, 69.5: H, 6.1%).

2'-Hydroxy-4-methoxy-%4',6'-trimethylchalcone, m.p. 150-151' (MeOH), S?%, (Found: C, 76.8: H, 6.8. $C_{19}H_{20}O_3$ requires C, 77.0: H, 6.8%).

2'-Hydroxy-x-phenylchalconc, m.p. 132° (MeOH): 50% (Found: C, 83.6: H, 5.5. $C_{21}H_{16}O_2$ requires C, 84.0 ; H, 5.4%).

2,3-trans-3-Methylflacanone *formation.* The appropriate a-methylchalcone (1 g) was cyclizcd with NaOH aq. $(10 \text{ ml}: 1.5\%)$ in EtOH (25 ml). The mixture was stirred for 24 hr at room temp and diluted with water. The dried ethercal extract gave the trans-flavanone. Elemental analyses and details of physical properties of the series arc in Table 3.

2549

General procedure for oxime formation. A solution of the *trans-flavanone* (1 g), hydroxylamine hydrochloride (0022 m) and piperidine (1.2 ml) in aqueous pyridine (20 ml; 66%) was refluxed for 6 hr. Dilution with icc/HCl gave the cis-3-methyl-4-oximinoflavan in 90-95% yield.

2,3-cis-3-Methyl-4-oximinoflavan (Va) m.p. 179-180". needles from MeOH (Found: C, 7571 : H, 6.2: N, 5.6. $C_{16}H_{15}O_2N$ requires C, 75.9: H, 6.0: N, 5.5%).

2,3-cis-3',4'-Methylenedioxy-3-methyl-4-oximinoflavan (Vb), m.p. 151-152°, needles from MeOH (Found : C, 69 -0 : H, 5.2: N, 4.9. $C_{17}H_{15}NO_4$ requires C, 68.7: H, 5.1: N, 4.7%). By replacement of water by D₂O in the reaction mixture 2,3-cis-3-deutero-3',4'-methylenedioxy-3-methyl-4-oximinoflavan was prepared.

2,3-cis-4',5.7-Trimethoxy-3-methyl-4-oximinoflavan (Vc), m.p. 230° (dec.), plates from benzene (Found : C, 66.8: H, 6.4: N, 4.2. $C_{19}H_{21}NO_5$ requires C, 66.5: H, 6.2: N, 4.1%).

2,3-cis-4'-Methoxy-3,5,7-trimethyl-4-oximinoflavan (Vd), and 2,3-trans-4'-methoxy-3,5,7-trimethyl-4*oximinoflavan* (VII). The mixture was refluxed for 20 hr. The dried ethereal solution gave an oil which was separated (TLC) into three fractions. Fraction (i) (8%) yielded a mixture of *cis-* and rrans-4'-methoxy-3,5,7 trimethylflavanones. Fraction (ii) (40%) gave 2,3-cis-4'-methoxy-3,5,6-trimethyl-4-oximinollavan m.p. 177, amorphous powder from benzene-light petroleum (b.p. $60-80^{\circ}$). (Found: C, 73.6: H, 6.6: N, 4.6. $C_{19}H_{21}NO_3$ requires C, 73.3; H, 6.8; N, 4.5%); v_{max} 3280 1615 cm⁻¹. Fraction (iii) (10%) gave 2,3-trans-4'methoxy-3,5,7-trimethyl-4-oximinoflavan, m.p. 161-162°, needles from benzene-light petroleum (b.p. 60-80°). (Found: C, 73.7: H, 7.1: N, 4.5. C₁₉H₂₁NO₃ requires C, 73.3: H, 6.8: N, 4.5): v_{max} 3290, 1615 cm⁻¹.

Hydrolysis of the oximes. Method 1. A mixture of the 4-oximinoflavan (1.2 mm), sodium metabisulphite $(2.6$ mm) and EtOH aq. $(10 \text{ ml}, 50\%)$ was refluxed for 6 hr. The bisulphite salt formed was purified by prep. TLC and subsequently decomposed rapidly with dilute HCI at 0". The aqueous mixture was extracted with CHCI₃. Evaporation of CHCI₃ extract yielded the 2,3-cis-3-methylflavanone. Elemental analysis and details of the physical properties of the cis-series are in Table 3.

Method 2. Hydrolysis of the 2,3-cis-3-methyl-4-oximinoflavan (50 mg) in ethanolic HCl (7 ml: 50%) gave 2,3-trans-3-methylflavanone (60%) and 2,3-cis-3-methylflavanone $(28\%).$

2,3-cis-3-deutero-3-*Methyl-3',4'-methylenedioxyflavanone* (63%) was prepared by hydrolysis (Method 1) of the corresponding *deutero* oximinoflavan.

Hydrolysis of 2,3-trons-4'-methoxy-3,5.7-trimethyl-4-oximinollavan with sodium metabisulphite gave the corresponding trans-flavanone m.p. and m.m.p. 91-92".

syn- and anti-3-Hydroxy-3-methyl-4-oximinoflavans. 3-Hydroxy-3-methylflavanone¹¹ (001 m) was refluxed with hydroxylamine hydrochloride (0.05 m) and piperidine (3 ml) in aqueous pyrydine (50 ml); 66%) for 6 hr. The products were poured on ice-HCI and extracted with ether. Removal of the solvent yielded a pale yellow oil which was separated by TLC into two fractions. The first m.p. 163-170" proved to be anti-3-hydroxy-3-methyl-4-oximinoflavan (27%). (Found: C, 71.7: H, 5.9: N, 5.0. $C_{16}H_{15}NO_3$ requires C, 71.4: H, 5.6: N, 5.2%). v_{max} 3450, 3200, 1610 cm⁻¹: NMR {(CD₃)₂CO}: τ -05 (broad s, =N--O<u>H</u>), 2.0 (J 9.4 Hz, S-H), 4.26 (s. 3-OH). 4.9 (s, 2-H). 8.7 (s, Me). The second fraction crystallized from MeOH in needles of syn-3-hydroxy-3-methyl-4-oximinoflavan (34%), m.p. 173-175°. (Found: C, 71⁻⁷: H, 5^{.9}: N, 5[.]3. $C_{16}H_{15}NO_3$ requires C, 71.4: H, 5.6: N, 5.2%); v_{max} 3330, 1610 cm⁻¹.

syn- and anti-3-Hydroxy-3',4'-methylenedtoxy-3-methyl-4-oximinoflavan. Oximation of 3-hydroxy-3',4'methylcncdioxy-3-methylflavanone was carried out as for 3-hydroxy-3-mcthylflavanone. TLC analyst, indicated the presence of two compounds. Compound (i) m.p. $148-150$ proved to bc *unti-3*-hydroxy-3'.4 mcthylenedioxy-3-mcthyl-4-oximinoflavan (35%) . (Found: C, 65.2: H, 4.7: N, 4.3. C₁₇H₁₃NO₅ requires C, 65.2: H, 4.8: N, 4.5%): v_{max} 3450, 3250, 1610 cm⁻¹. Compound (ii) crystallized from MeOH as needles of syn-3-hydroxy-3',4'-methylenedioxy-3-methyl-4-oximinoflavan (41%) m.p. 163°. (Found: C, 65 \cdot 0; H, 5.1 : N, 4.2. $C_{1.7}H_{1.5}NO_5$ requires C, 65.2 : H, 4.8 : N, 4.5%): v_{max} 3220, 1610 cm⁻¹.

3-Phenylflavan hydrazone. 2,3-trans-3-Phenylflavanone (500 mg) was dissolved in pyridine (10 ml) and treated with a solution of hydrazine monohydrochloride (I g) in aqueous pyridine (10 ml, 50%). After 5 days at room temp. the mixture was poured onto ice-water. The crude product was collected and crystallized from EtOH in pale yellow needles of 3-phenylflavan hydrazone, m.p. $177-179^{\circ}$. (Found: C, 80-6: H, 5.5; N, 8.9: O, (direct) 5.4. $C_{21}H_{18}N_2O$ requires C, 80.4: H, 5.7: N, 8.9; O, 5.08%). NMR spectrum $J_{2,3}$ 3.2 Hz.

Acknowledgemenrs-We are indebted to the Minister for Education, for the award of a maintenance grant (to A.K.K. and T.L.).

REFERENCES

¹ D. M. X. Donnelly, A. K. Keenan, T. Leahy and E. M. Philbin, *Tetrahedron Letters* 1333 (1970)

cis-3-Methylflavanones 2551

- ² J. W. Clark-Lewis, R. W. Jemison and V. Nair, Aust. J. Chem. 21, 3015 (1968)
- ³ F. M. Dean, *Naturally Occurring Oxygen Ring Compounds*, p. 351, Butterworths London (1963)
- 4 S. Fujise. Y. Fujise and S. Hishida, *Nippon Kagaku* Zasshi 84, 78 (1963): Gem. Abs. 60, 5444e (1964)
- 5 R. Bognar, M. Rakosi and Gy. Litkei, *Acta Chim. Hung. 34,* 253 (1962); J. W. Clark-Lewis, T. M. Spotswood and L. R. Williams, Aust. J. Chem. 16, 107 (1963)
- 6 S. Pines, J. Chermerda and M. Kozlowski, J. Org. Chem. 31. 3446 (1966)
- 7 G. Janzsó, F. Kállay, I. Koczor and L. Radics, Tetrahedron 3699 (1967)
- ⁸ E. Lustig, *J. Phys. Chem.* 65, 491 (1961)
- ⁹ G. J. Karabatsos and R. A. Taller, *Tetrahedron 24*, 3347 (1968): Z. W. Wolkowski, N. Thoai and J. Wiemann, *Tetrahedron Letters 93* (1970)
- " 2. W. Wolkowski. *Ibid.* 825 (1971)
- ¹¹ W. P. Cullen, D. M. X. Donnelly, A. K. Keenan, T. P. Lavin, D. P. Melody and E. M. Philbin, J. Chem. Soc. 2848 (1971)
- 12 C. H. Lin and C. L. Yeg. J. Chinese Chem. Soc. 14, 20 (1967)